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Approximate Output Processes in Hidden-User 
Packet Radio Systems 

Abstract-The  processes consisting of the  packet  interdeparture  times 
for  contention-type packet  broadcasting  systems  in a hidden-user,  single- 
hop environment  are  studied  under  the  heavy-traffic assumption.  The 
channel access  protocols considered  include  pure ALOHA and  unslotted 
nonpersistent  carrier-sense-multiple-access (CSMA). The  theory of super- 
position of independent  renewal  processes is applied to approximate  the 
distribution of the  duration of each unsuccessful  transmission  period  in 
channel state. Our  analysis  results for the  channel  throughput  and  the 
coefficient of variation for the  packet  interdeparture  time  in  symmetric 
configurations are shown to be  in good agreement  with  simulation  results 
over a wide  range of offered channel traffic. 

I. INTRODUCTION 

I N [ 121, we  conducted  an  exact  stochastic  analysis of  packet 
interdeparture  times  (i.e.,  intervals  between  two  consecutive 

successful  transmissions)  for  several  channel  access  protocols 
in packet  broadcasting  systems.  Channel  access  protocols 
which  we  called memoryless protocols, such  as  slotted 
ALOHA  [9],  pure  ALOHA [ 11, and  slotted  and  unslotted 
nonpersistent  carrier-sense-multiple-access  (CSMA) [7], [ 131, 
were  studied  to  find  explicitly  the  distributions  of  packet 
interdeparture  times.  (The  reciprocal  of  the  mean  interdepar- 
ture  time is the  channel  throughput,  one of our main 
performance  measures.) In our earlier treatment of CSMA, i t  
was  assumed  that  every  user  is in line  of  sight  of all others so 
that any  transmission  can  be  heard  (after  a  finite  signal 
propagation  delay) by all  parties  (i.e.,  a fully-connected 
configuration).  Regulation  of  transmission by listening  to 
other  transmissions  is  the  essense of CSMA,  and  it  is  that 
which  achieves  a  high  throughput  (as  long as  the  propagation 
delay  is  small  compared  to  the  packet  transmission  time). 

However, in applying  CSMA  to  ground-based  packet  radio 
communication  systems for a  population of geographically 
distributed  users,  such  as  PRNET [6], there  are many 
situations in which some  users  cannot  hear  transmissions  from 
certain  other  users;  this  is  possibly  because  they  are  out of 
transmission  range  of  each  other or because  they  are  separated 
by some  physical  obstacles  (e.g.,  mountains)  blocking  the 
signal.  Such  a  situation,  called  the hidden-terminal problem, 
was  analyzed  by  Tobagi  and  Kleinrock [ 131, [ 141 and  a  serious 
throughput  degradation  was  shown  to  exist.  This  is  because 
hidden  users  behave  independently,  ignoring  the  ongoing 
transmissions.  (The  busy-tone  multiple-access  (BTMA)  was 
then  proposed  to  save  the  day.) 

This  paper  focuses  on  the  performance  analysis  of  hidden- 
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user  configurations  by  use  of  an  approach  different  from [ 141. 
Our  method is based  on  the  modeling  of  packet  transmission 
activity at  each  user  as  a  two-state  (transmitting or not) 
alternating  renewal  process.  In  our  models,  we  assume  that 
each  user  has  packets  ready  for  transmission  at  all  times 
(heavy-traffic assumption).  Also,  the  transmission  protocol  is 
assumed  to  be  memoryless in the  sense  that  whenever  a  user 
experiences  an  idle  (nontransmitting)  period,  he  renews  his 
action  regardless  of  the  past  happenings.  Now, let US define 
the  two  alternating  states  in  channel.  The transmission state 
in channel  is  the  state  where  at  least  one  user is transmitting or 
any  transmission  is  being  sensed.  Also,  the  channel idle state 
is  defined  as  the  state  where  no  users  are  transmitting or no 
transmissions  are  being  sensed.  Thus,  the  channel  state  also 
alternates  between  the  transmission  and  idle  periods.  (There 
can be two  consecutive  transmission  periods  with  an  idle 
period  of  duration 0 between  them.) 

A  transmission  period  is successful if there  are  no  other 
transmissions  heard  at  the  intended  receiver  during  the 
(protocol-dependent)  vulnerable  period.  Exact  analysis  is 
possible  for  the  stochastic  property  of  the  durations  of  the 
channel  idle  period  and  a  successful  transmission  period. 
However,  to  analyze  the  duration of  an unsuccessful transmis- 
sion  period,  an  approximation  using  the  theory of superposi- 
t ion  of independent  renewal  processes  is  applied.  This 
treatment  involves  a  twofold  approximation: i) we  treat  each 
user’s  transmission  process  as  independent  with  a  properly 
reduced  transmission  rate  (whereas, in fact,  two  CSMA  users 
in line  of  sight  of  each  other  behave  dependently); ii) we  treat 
consecutive  interevent  times in a  superposed  process  as if they 
were  independent  and  identically  distributed  (whereas in 
reality they  are  not).  The  validation of our approximation  will 
be  provided  by  comparing  the  results  with  simulation. 

We  assume  the  existence of  a  single  receiving  station  which 
is in line  of  sight of all  users (single-hop systems). We now 
realize a spectrum of hiddenness ranging  from  ALOHA 
(completely  hidden) to  fully-connected  CSMA  (completely 
visible)  and  the  partially  hidden  configuration  of  CSMA in 
between. Our approach  makes it possible  for  the  solution  to 
range  smoothly  over  all  degrees  of  hiddenness,  as  opposed  to 
the  one  in  [14]  where,  for  example,  the  expression  for  the 
channel  throughput in the  limit  of  fully-connected  CSMA (in a 
zero  propagation  delay,  infinite  population model)  does  not 
agree  with  the  exact  result in [7].  Also,  through  (approximate) 
analysis  of  the  durations of alternating  channel  states  (idle  and 
transmitting),  we  obtain  an  approximation  to  the  mean  and 
variance  of  the  packet  interdeparture  time.  These  are  used  to 
determine  the  coefficients in the  diffusion  process  approxima- 
tion  to  users’  packet  queue  length  distribution in [ l  11. 

This  paper  is  organized  as  follows.  In  Section 11, we  show  a 
brief  extract  from  [12]  of  the  analysis of packet  output 
processes in contention-type  memoryless  systems.  In  Section 
111, we  quote  some  results  on  the  superposition of  renewal 
processes.  Based  on  these  preliminaries,  we  analyze  the  packet 
departure  processes  of  pure  ALOHA  (Section IV) and 
unslotted  nonpersistent  CSMA  (Section V) systems.  Compari- 
son  of  our  calculated  results with  the  simulation  results in 
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some  example  systems  is discussed  in  Section VI. We  also 
discuss  the rationale of  our  assumptions and give directions to 
possible refinement  of  the  present  formulation.  Our presenta- 
tion  in  this paper  is restricted to unslotted  systems  consisting 
of statistically  identical users.  See [lo] for a similar treatment 
of slotted CSMA  systems  and  cases  of nonidentical  users. 

Throughout  the  paper,  the packet length  is assumed to be 
constant,  and its transmission  time is chosen  as  the unit of 
time.  Then, in typical  ground-based systems,  the signal 
propagation  delay,  denoted by a, is small (e.g., a = 0.01 
normalized time units). In  the  analysis of pure  ALOHA 
(Section IV)  we  assume that a = 0. We consider the  case a 2 
0 for  CSMA  systems (Section V) with  various degrees of 
hiddenness.  The completely  hidden case reduces to  pure 
ALOHA with a 2 0. 

11. ANALYSIS OF OUTPUT PROCESSES 

As  shown in [12], in contention-type  systems with  heavy 
traffic, a packet  interdeparture  time X consists of K - 1 
cycles of alternating  channel  idle  periods { I ( @ }  and  unsuccess- 
ful  transmission  periods {Fck)} (k  = 1, 2, . . . , K - 1) 
terminated by the last cycle of I (K)  and a  successful  transmis- 
sion  period T 

X =  [I('') + F(")] + + T. 
K -  I 

( 1 )  

In  particular,  for  memoryless  protocols {I(k) + P ) ;  k = 1 ,2 ,  
. * . , K - 1 } and + T }  are mutually  independent and 
also  each  of  them  is  independent of K .  Thus,  we  can  express 
the mean and  variance  of X as 

k =  I 

X = ( R -  1 ) ( 1 + E ) + I +  T (2) 

Var [X] = R  Var [ I ]  +(K- 1)  Var [ F ]  

+Var [TI +(I+E)2 Var [ K ]  (3) 
where Z and F represent  each  of {Zck)} and {Fck)} identically 
distributed,  respectively,  and  we  have  assumed  the  indepen- 
dence of I(k), FCk), and T for each k. For contention-type, 
memoryless  protocols, K is geometrically  distributed  as 

Prob [K=k]=( l -y )k - ly   k= l ,  2, 

K = -  ; Var [K]=-  
- 1  1-7 

Y Y2 
where y is  the probability that a transmission  is successful 
once  it  has  been  started by breaking  the channel idle  period. 

The  throughput S and  the  coefficient of variation Cz of 
packet  interdeparture  times  for  the  whole system are given by 

For fully-connected CSMA  systems  and  an infinite  popula- 
tion  of  pure  ALOHA  users,  we  have found the exact 
expressions  for  the  distribution of X as well as  for  the  mean 
and  variance  of X in [12]. For systems involving  a  finite 
number of hidden  users,  however,  it  seems  very difficult to 
find  the  distribution of F for  the  reasons mentioned  in  Section 
I. Therefore,  we  introduce  several  approximations based on 
the  analysis of superposed  renewal  processes. 

111. SUPERPOSITION OF INDEPENDENT RENEWAL PROCESSES 

We  assume  that  there  are a finite  number M of event  sources 
(indexed  1 through M ) ,  at  each of which events  occur  from 
time  to  time independently of the  others. Let the interevent 
times  at  source i be  independent  and identically distributed  as 
represented by Y with mean Y and  distribution function F ( x ) ,  
x 2 0 (identical for i = 1, 2, . 0 ,  M ) .  Fig. 1 illustrates  a 
combination of these  events  into a superposition  process.  Note 

Fig. 1. Interevent time in the superposition process. 

that in the  superposition  process,  the interevent times  are 
generally  neither  independent nor identically distributed.  (The 
correlation  among  such  successive  intervals  was studied by 
Lawrance [8] and  Ito [5].) However,  we use here only the 
steady-state distribution of a single interevent time,  denoted by 
Y,  following an  arbitrarily  chosen  event. 

Conditioned on  picking  an  event  from  source i, the 
following interevent  time Y ( i )  can  be  expressed  as 

where 8 stands  for  the residual  life  in source j whose pdf is 
given  by [ 1 - F(x)]/ Y. Thus,  the  distribution of P i s  given by 
[21 

Prob [ P> x] = [ 1 - F ( x ) ]  

As  an  example,  assume  that 

1 

g 
Y =  1 +- (8) 

which is  an exponential distribution shifted  by 1. This example_ 
will be used later in the  distribution of the  random  variable Y 
when P < 1 (we  denote  this  random  variable by f ). 

Prob [f < x] P Prob [ P  < x (  P < 1]= 
1 - Prob [ P>x] 
1 - Prob [ P> 11 

(9) or 

Prob [f>x] = 
[l  +g(l  -x)]M-'- 1 

( 1  +g)M-l- 1 
o < x <  1 (10) 

from  which  we  can  calculate 

1 
Var [f] = 

[( 1 + g)M- 1 - 112 
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We note that the  limiting, forms of the expressions in (IO) and 
(1 1) for M -+ 03 with G fixed  at G = gM give 

1 - e-Gx 
Prob [f 6 x]=- 

1 -e-G 
O < x < l  

- 1 e-G 1 e- f=-- -  
G l - e - c  

; Var I f ] = - -  
G 2  (1 -e-G)2 (12) 

which can also be  obtained by considering  a collective Poisson 
stream with rate G [ 121. 

IV. OUTPUT PROCESSES OF PURE ALOHA SYSTEMS 
We first consider output  processes with pure (or unslotted) 

ALOHA for  a finite  number M of users.  We assume that the 
propagation  delay a = 0. (The case of nonzero a is given as  a 
special  case of the  system  analyzed in Section V.) Whether 
hidden or  not, each  user of pure ALOHA behaves  indepen- 
dently of all others. So, let each  user alternate between  the 
transmitting state of duration 1 and the idle state of duration 
exponentially  distributed with mean l/g.  Thus, if we focus 
attention on the  instants of starting  transmission  at  each user, 
the intervals  between  those  instants are independent  and 
identically distributed as given by the  distribution  function in 
(8). The interval  between two  arbitrarily chosen  successive 
starts of transmissions in the whole system is distributed as 
given by (7). 

Now, let us give y and  the  distributions of I ,  F, and T for 
pure ALOHA. First. obviously  the  channel idle period is 
exponentially  distributed with aggregate  parameter g M :  

Prob [ I  Q y ] =  1 -e-""g-" y 2 0 

A successful  transmission is obtained  when a packet  which 
breaks  the  channel idle period is not overlapped by any other 
transmission during its entire transmission  period of length 1. 
Thus, 

y = e-(M- I)g. (14) 
The duration of a successful  transmission  period is constant: 

T= 1 .  (15) 

The results in  (13)-( 15) are  exact. It remains  for us to find 
the distribution of F. Note that F consists of an indefinite 
number of successive  transmissions  such that the  intervals 
between their  successive  start times are all less  than 1. Such an 
interval when arbitrarily chosen is distributed as in (9).  A 
difficulty arises in finding the distribution of F ;  the  successive 
intervals  between  transmission start times are neither  indepen- 
dent  nor  identically distributed.  However, let us introduce an 
approximation that they are independent  and  identically 
distributed as is given by (9). Thus. defining f ( n )  as the nth 
such  interval in an interval F, we have . 

L 

F =  f(")+ 1. 
n =  1 

The number of transmissions  contained in an unsuccessful 
transmission period, denoted by L ,  is geometrically distrjb- 
uted (by approximation)  as 

Prob [L = n ]  (1 -&)"-I6 n = l ,  2, . * *  

where 6 is the  probability  that an  arbitrary interval  between 

two successive transmission  start  times is n o  shorter than  the 
packet  transmission time 1 .  In the  context of a superposition 
process, it is given by 

6 4 Prob [ P  2 1]=(1 +g)-(M-l). (18) 
We  are now in a position to calculate F a n d  Var IF] by use 

of the*formula  for the  sum of independent  random  variables. 
From '( 16), they are  expressed as 

F=Lf+l;  Var [ F ] = L  Var [ f ] + f *  Var [ L ]  (19) 

where f is the  generic representation of the identically 
distributedf(")'s, and its distribution is given by ( I O ) .  Also L 
and Var [LI are given by ( 1  7) and ( I  8). Thus. we get 

(1 +g)M- 1 -gM(1 +g) - ' " - "  

gM[1-(1 +g)-" - " ]  
F= (20) 

2(1 +g)M-'[(l + g ) M + ' -  I ]  
g"(M+ 1)[(1 + g ) M - ' -  11  

Var [ F ] =  

( 1  +g)"-I[(l +g)M- 1]2[(1 +g)M-I-2] 
g'M2[(1 + g ) M - ' -  1 1 2  

+ 

+ ( 1  +g)M- '  

[(I + g ) M - ' -  1 1 2  [2(1 

- 1'- I] . (21) 2[(1 +g)*'- 1][(1 + g ) " - ' -  

gM 
It is interesting to  examine the validity of our  approximation 

just introduced by comparing F given in (20) and the  exact 
expression for F (obtained in the Appendix): 

The  difference between (20) and (22) only  exists  between the 
terms ( I  + g) -("-I) and e-g(* ' - ' )  which are close when M is 
large with G fixed  at G = g M  and are identical in the lirpit 
M -+ 03. 

Thus. we have expressed all variables needed to evaluate (5) 
in terms of g and M .  The numerical  results in some  example 
configurations are provided later along with those  for  unslot- 
ted CSMA (see  Fig.  2). 

v. OUTPUT PROCESSES OF UNSLOTTED CsMA SYSTEMS 
We now proceed to study the packet interdeparture times for 

a population of unslotted nonpersistent CSMA users in a 
hidden-user environment with a fixed propagation  delay a 2 
0. We assume  a  symmetric hidden-user  configuration which 
consists of M identical users, each of whom can  hear 
transmissions from m users  (including himself). So, the case 
m = 1 corresponds  to  a  pure ALOHA System while  the  case 
m = M is equivalent to a population of fully-connected 
CSMA users. 

Given  the  rate of starting  transmission g by each user, the 
distribution of a channel idle period [ i s  given in ( 1  3). The 
probability that a  user  who initiates a transmission  period gets 
a success is then given by 

Y=yI . Yz (23) 
where 

y l = e x p  [ - (1+a)  * g ( M - m ) ] ;  

yz=exp ! - a  . d m -  1)l. (24) 
It  should  be clear that y~ accounts  for  the probability that 
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M =  20 : Number of total  users 
m : Number of users  each  user can hear 
. . Analysis 

Simulation  results / 

0 
0.01 0.05 0.1 0.5 1 5 10 50 

1.1 

1 

0.8 

0.6 

N 
0 

0.4 

0.2 

0 
0.01 0.05 0.1 0.5 1 5 10 50 100 

G (offered  traffic) 

(b) 
Fig. 2. (a) Throughput (S) and (b) coefficient of variation of the packet 

interdeparture time (C2) in unslotted CSMA (zero propagation delay) for 
symmetric hidden-user configurations. 

users  hidden  from  a  user  who  initiates  the  transmission  period  we  have 
do  notatart transmission  during  time 1 + a, and  that y2 is  the 
probability  that  those  users  who  can  hear  the  leading  transmis- F( ' )  with  probability Y l U  - Y2) - YI - Y 
sion do not  start  transmission  during  time a. The  duration  of  a 
successful  transmission  period is constant: 

-- 
1-y  1-7 

F(2) with  probability - 1 - Y l  
T =  1 +a.  (25) 1-Y 

G (offered  traffic) 

(a) 

M= 20 - : Analysis 

Simulation  results 

In order  to  deal  with  the  duration  of  an  unsuccessful and so 
transmission  period F, we  distinguish  two  kinds of  unsuccess- 
ful  transmission  periods;  the  first  kind  (whose  duration  is E=--- '' - ' E [  FU)] + - E[F(*)] 
denoted by F( ' ) j  is  one  such  that no transmissions by the  users 
hidden  from  the  initiating user are involved  in  the  transmission 
period,  and  the  second  kind  (whose  duration  is  denoted by var [PI =- E [ {  ~ ( 1 ) } 2 1 + -  
F @ ) )  is one  containing  transmissions  from  hidden  users.  Thus, 1-Y 1 -Y 

1-71 
1-7  1 -Y 

7 1 - Y  1-71 E[{  F(')} 2] - F2. (27) 
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Now  the  exact  distribution  of F(')  is given in [ 121, since this 
corresponds  to  the  duration  of  an  unsuccessful  transmission 
period in a  fully-connected  environment  with m users.  That  is, 
if Y is the  transmission  start  time of the  last  colliding  packet in 
an  unsuccessful  transmission  period,  we  have 

F( ' )=  1 +a+ Y 

Prob [ Y < y ]  = 
(1 - e - g y + e - g @ ) m - l  -yz 

O < y < a  
1 - 7 2  

(28) 
and so 

E [ ( F " ) ) k ] = ( l + a +  Y ) k  

k= 1, 2. (29) 
It  remains  for us to  find  the  distribution of F(2) by 

approximation.  Note  that F(2) consists  of  a  random  number  of 
consecutive  transmissions  such  that  the  duration  of  each 
interval  between  two  successive  starts  of  transmission  is  less 
than  1 + a.  Therefore, we have  the  same intractability as in 
the  analysis  of  pure  ALOHA  which  has  forced us to the 
approximation in (16)-(18).  In  addition,  since  each CSMA 
user  does  not  behave  independently  once  any  transmission  has 
started  (he  stops  transmission  jnitiations  when  he  hears  other 
transmissions),  the  independence  of  source  processes in a 
superposition  on  which our approximation in pure  ALOHA 
was  based is no  longer  applicable.  Nevertheless,  we  here 
introduce  another  assumption  for  approximation,  saying  that 
the  intervals  between  two  syccessive  transmission  start  times 
at each  user  are  independent  ,and identically  distributed as 
given by ( 8 )  but  with  properly  reduced  transmission  rates g' . 
We  propose  that  the  reduied  rates g'  be  determined  as 
follows: 

g '   = g  Prob [a user  does  not  hear  the  ongoing 
transmission(s) lat least  one  other 
user is transmitting] 

= g .  ( 1  +:+y- ( +:+y 

(30) 

1 -  ( 1  +:l'g-l)M-' 

where  the  factor g-l/(l + a + g-I) is the  probability  that  a 
user  is  not  transmitting  under  the  assumption that he  (indepen- 
dently  of  others)  alternates  between  the  transmission  of  length 
1 + a and  the  exponentially  distributed  idle  time  (with  mean 
l /g) .  Note  that if a  user  is  completely  hidden  from all other 
users (rn = l ) ,  then  (30)  duly  gives g' = g. On  the  other 
hand, if he  can  be  heard by  all  others (m =. M ) ,  then  (30) 
yields g' = 0 which is fine  again. Between  these extreme 
cases,  (30)  gives g' between 0 and g depending  on  the 
connectivity m of  a user.  The  more  he is heard,  the  closer g'  is 
to 0. 

From the  above-mentioned  twofold  appfoximations,  we 
may  write  down  the  expressions  to  calculate  the  distribution  of 
F(2) similar  to  the  treatment in Section  IV  but ' with  a 
modification due  to  the  nonzero  value of a. 

L 

F(*) = f'"' + 1 + a (3 1) 
n =  I 

where 
L 

and 

Prob [ f ( " ) > x ]  = 
[l  +g'(l + a - x ) ] M - I -  1 

[l   +g'(l  + a ) ] V -  1 

' .  0 < x < 1+a. (33) 

From  (31)-(33),  we  have  the  following  expressions  for  the 
mean  and variance  of F('). ! 

g y -  1 - ( I  -ta)g%fg;"-" 
g"[1 Ig;'M-l)] 

2gl ,@I - 1) 
(g')ZM(M+  l)(gY-l- 1) 

E [ F @ ) ]  = 
I 

M - l  M+1 

Var [ F!')] = 

+ gy-"(gy-  ly(gy-I -2) 
(g'M)?(gY-' - 1)* 

+ (1 +a)zgy-' [2g;-I 
(g7-1- 1)2 

-- 

(34) 

where 

gl 2 (l+a)g'.l .  (35) 
Thus,  we  can  calculate F and  Var [F]  by  (27).  All  other 
quantities  needed  to  eva@ate"(5)  have  also  been  given. 

In  the  special  case 4 = 0, we have tht? distribution  of Igiven 
by (13),  and I .  

= e - ( M - m ) g  

(1 +g)-W-l)- (1 +g)-!M-l) 
l-(l.+g)-(M-!) 

g ' = g  * (36) 

Thus, F and  Var [F] are  simply'  evaluated via (20) and (2 I) ,  
respectively,  with g. reelaced by g ' .  In  'the  case of fully- 
connected  users (rn = M ) ,  we  have g ' ' = 0 so that F = Var 
[F] = 0 and y = 1  (eviry  transmission  is  spccessful).  Then 
we  have  explicitly (G gM) 

(37) 

which  is  an  exact  result for the  nonpersistent  CSMA  with  no 
hidden  users in the  limit  of  zero  propagation  delay [7]. Note 
that  the  formulation in [14] (which  applies  the  technique of 
t 'reduced  rate"  to  both  successful  and  unsuccessful  transrnis- 
sions  without  distinguishing  the  two  cases)  fails  tp  reach  (37) 
when M -+ 03 with m = M .  

VI. SIMULATION RESULTS AND DISCUSSION 

In  this  section,  after  describing  the  simulation  model,  we 
compare  the  simulation  results with  those  calculated by using 
our approximation.  Then  some of our basic?  assumptions  for 
the  approximation.  are  discussed  with  regard to' their  rationale. 
At  the same  time,.  suggestions  on the  refinement  of  the  present 
model  are  made. 

In  the  simulation  program,  the  nonpersistent  CSMA  proto- 
col  is  implemented  as  follows:  when  a  user  finds  any  ongoing 
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T A B L E  I 
COMPARISON OF SIMULATION AND APPROXIMATION RESULTS FOR THE 
THROUGHPUT. s1 = LOWER  BOUND, s2 = UPPER BOUND OF 95 
PERCENT  CONFIDENCE  INTERVALS. s = APPROXIMATION. (a) M = 20, 
m = 1, a = 0.5. ( b ) M  = 20, rn = 10, a = 0. ( c ) M  = 20, m = 19, 

a = 0.5. 
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transmission at  the  time of his  scheduled transmission,  he 
defers  (reschedules) his  transmission by an exponentially 
distributed  time  after  the  end of the  current transmission (i.e., 
1 + a after  the  start of transmission). Given a set of parameter 
values (a ,  M ,  m,  and G = g M ) ,  we collected 2000 
interdeparture  times  and  computed  from them the sample 
mean and  sample  variance  for  the  throughput values S .  In 
Table  I,  we  show  the  95  percent  confidence intervals for S 
using 20 such  samples,  along with the values  calculated by our 
approximate method for  three  sets of parameters a,  M ,  and m.  
In all cases,  our  approximation yields  throughput  values 
within or  very  close  to  the 95 percent  confidence intervals. 

In  order  to  examine  more  cases,  we  show in Figs. 2-4 
simulation  results  for S and C2 using only  single  samples each 
consisting of 2000 successful  transmissions.  Fig. 2(a)  and  (b) 
for  the  symmetric  hidden-user  configurations in unslotted 
CSMA  systems of M = 20  users, with zero propagation 
delay,  manifests  excellent  agreement between our  approxima- 
tion and  simulation  results  over  almost  the whole range of the 
offered  channel  traffic value G in each  case of hiddenness. 
Although agreement  for small G is not surprising because we 
do not have many collisions  there  anyway, the agreement  for 
large G is noteworthy.  (The treatment in [14] claims its 

applicability only for relatively  small G.) Fig.  3(a) and (b) is 
for the symmetric hidden-user  configurations in CSMA with 
nonzero  propagation delays a. The  agreement  (over the whole 
range of C) is again  excellent for any reasonable  value of a. 
Fig. 4(a) and (b)  demonstrates  agreement in various combina- 
tions of m and a with a fixed  value of G = 1.778. (This 
particular value of C was  chosen as it differentiates  displayed 
cases well. We get similar  agreement  for  other values of G.) 
From  these comparisons, we may claim  the  universality of our 
approximation method in  a wide  range of system parameters 
m,  a,  and G. 

Now, let us examine  some of our assumptions which have 
been introduced to make  the analysis  tractable. In (16) and 
(31), we have assumed that eachf'"), the interval  between two 
successive  transmission start times  such that it is shorter than 
the packet transmission  time. is independent  and  identically 
distributed, while in reality they are not.  We have,  however.  a 
theoretical  rationale for this  assumption for  a large  user 
population: i.e., the  fact that a  large  number of merged point 
processes  tends to be a Poisson stream with aggregate rate 
(Palm-Khintchine theorem;  see,  e.g.. [3]). The apparent  good 
agreement of our results  with  simulation for  as many as 20 
users endorses this assertion. In our second  assumption. to 
account for the carrier-sensing  effects, we have  reduced the 
transmission  rates  and used them as  parameters in  the 
exponential distributions  for transmission  rescheduling. In 
reality,  however,  since we reschedule transmission  at  indefi- 
nite times until we sense the  channel  idle.  the  interval  between 
the  actual  transmissions is likely to be distributed  as a random 
number of exponentially  distributed times rather than as a 
single exponential  distribution with reduced rate. 

The  dependence of f ( " ) ' s  on each  other may be taken into 
consideration  partially as  follows.  For  example. in the case  of 
unslotted CSMA (including pure  ALOHA) with zero propaga- 
tion delay,  we know  exactly  the  distribution of f ( ' ) :  

1 - e - ( M - m ) g x  

Prob [f'" < X I =  - e - ( M - m ) g  0 6 x < 1 .  (38) 

We may also use  the  (exact) joint distribution of a few 
successive interevent times given in [5] and  [8].  Thus,  for 
those values of offered  traffic  such that an unsuccessful 
transmission  involves  only a few  transmissions.  this  refine- 
ment is expected to improve the  present  formulation  results. I t  
is also noted in this connection that Ito [4]  has  derived the 
interevent time distribution  conditioned on the initial and 
terminal event  sources in the  superposed renewal processes. 
Thus,  some  improvement based on these  ideas can be 
expected. 

VII. CONCLUSION 
We  have given an approximate  analysis  for the  packet 

departure  processes in a hidden-user environment of single- 
hop packet broadcasting systems.  The channel access  proto- 
cols considered  include pure  ALOHA  and unslotted carrier- 
sense-multiple-access (CSMA). 

Exact  stochastic analysis  has been  given for the durations of 
a channel idle period,  a successful  transmission period, and an 
unsuccessful  transmission  period  consisting  only of those 
packets from  the users who  can  hear the  initiating transmis- 
sion. An approximate  analysis  has been developed for the 
duration of an unsuccessful  transmission  period  involving 
hidden users'  packets.  Our  approximation is based on the 
theory of superposition of independent  renewal processes, 
together with a  proper reduction of transmission start rates to 
take care of carrier-sense  effects. 

The channel throughput and the coefficient of variation of 
the packet interdeparture  time calculated by use of our 
approximation have  been compared with the simulation  results 
in symmetric  hearing  configurations  for  a variety of degrees of 
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Fig. 3.  (a) Throughput ( S )  and (b) coefficient of variation of the packet 

interdeparture time (C') in unslotted CSMA (nonzero propagation delay) 
for a symmetric hidden-user configuration (A4 = 20, rn = 19). 

hiddenness. The  agreement  between them is excellent for 
almost the whole  range of offered channel  traffic and all 
reasonable  values of propagation delay.  Lastly, we have 
discussed some rationale for  our  assumptions  and suggested 
possible  refinement. 

The  first  two  moments of packet interdeparture time are 
used  in [ I l l  to  determine  the coefficients  in the diffusion 
process  approximation  to  the  queue length  distribution at  the 
users. 

APPENDIX 

DERIVATION OF (22) 
We will derive  the  expression  for F in (22), the  exact mean 

duration  of  an unsuccessful  transmission  period in pure 
ALOHA  systems.  Since  each  user  alternates between the 
transmitting  state  of  duration 1 and  the  idle  state of mean 

duration l/g, the probability Po that the channel is idle at 
random time is given by 

Now,  due  to  the renewal property of channel state, Po must 
equal  the  ratio of the  average  duration of channel idle period f 
to  the  average  cycle  time B + f, where B is the  average 
duration of the  common channel  busy  period: 

where f is given  in (13). Since  the  duration of a  channel  busy 
period is 1 with probability y = e-g(M-l)  (a  successful 
transmission period),  and is F with  probability 1 - y (an 



692 IEEE  TRANSACTIONS  ON  COMMUNICATIONS, VOL. COM-34, NO. I, JULY 1986 

0.8 - 

0.6 - 

v) 

0.4 - 

0.2 - 

Simulation  results 

M = 20 : Number of users 
~ = 1 , 7 7 8  : Total offered traffic 
- : Analysis f- 15 

n 17 

I 

0.01 0.05 0.1 

a 

(a) 

0.5 

m =10 
0 

M=20 
G =1,770 
- ; Analysis 

01 I I I 1  

0.01 0.05 0.1 0.5 

a 

(b) 
Fig. 4. (a) Throughput ( S )  and (b) coefficient of variation of the packet 

interdeparture time (e2) in unslotted CSMA for  symmetric hidden-user 
configurations with various a and m. 

unsuccessful transmission period), we have  a relationship: 

B = e - g ( M - l )  1 + [1 - e - g ( M - 1 ) 1  p. 64.3) 

Equations (A.1)-(A.3) and (13) yield (22) .  
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